Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
medrxiv; 2024.
Preprint en Inglés | medRxiv | ID: ppzbmed-10.1101.2024.03.15.24304071

RESUMEN

Introduction: The Covid-19 pandemic, caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has triggered a serious global health crisis, resulting in millions of reported deaths since its initial identification in China in November 2019. The global disparities in immunization access emphasize the urgent need for ongoing research into therapeutic interventions. This study focuses on the potential use of molecular dihydrogen (H2) inhalation as an adjunctive treatment for Covid-19. H2 therapy shows promise in inhibiting intracellular signaling pathways associated with inflammation, particularly when administered early in conjunction with nasal oxygen therapy. Methods: This Phase I study, characterized by an open-label, prospective, monocentric, and single ascending dose design, seeks to assess the safety and tolerability of the procedure in individuals with confirmed SARS-CoV-2 infection. Employing a 3+3 design, the study includes three exposure durations (target durations): 1 day (D1), 3 days (D2), and 6 days (D3). Results: We concluded that the Maximum Tolerated Duration is at least three days. Every patient showed clinical improvement and excellent tolerance to H2 therapy. Discussion/conclusion: To the best of our knowledge, this phase 1 clinical trial is the first to establish the safety of inhaling a mixture of H2 (3.6%) and N2 (96.4%) in hospitalized Covid-19 patients. The original device and method employed ensure the absence of explosion risk. The encouraging outcomes observed in the 12 patients included in the study justify further exploration through larger, controlled clinical trials.


Asunto(s)
COVID-19 , Infecciones por Coronavirus , Inflamación
2.
medrxiv; 2021.
Preprint en Inglés | medRxiv | ID: ppzbmed-10.1101.2021.08.31.21262538

RESUMEN

COVID-19 is caused by the human pathogen severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and has resulted in widespread morbidity and mortality. CD4+ T cells, CD8+ T cells and neutralizing antibodies all contribute to control SARS-CoV-2 infection. However, heterogeneity is a major factor in disease severity and in immune innate and adaptive responses to SARS-CoV-2. We performed a deep analysis by flow cytometry of lymphocyte populations of 125 hospitalized SARS-CoV-2 infected patients on the day of hospital admission. Five clusters of patients were identified using hierarchical classification on the basis of their immunophenotypic profile, with different mortality outcomes. Some characteristics were observed in all the clusters of patients, such as lymphopenia and an elevated level of effector CD8+CCR7- T cells. However, low levels of T cell activation are associated to a better disease outcome; on the other hand, profound CD8+ T-cell lymphopenia, a high level of CD4+ and CD8+ T-cell activation and a high level of CD8+ T-cell senescence are associated with a higher mortality outcome. Furthermore, a cluster of patient was characterized by high B-cell responses with an extremely high level of plasmablasts. Our study points out the prognostic value of lymphocyte parameters such as T-cell activation and senescence and strengthen the interest in treating the patients early in course of the disease with targeted immunomodulatory therapies based on the type of adaptive response of each patient.


Asunto(s)
Infecciones por Coronavirus , Síndrome Respiratorio Agudo Grave , COVID-19 , Linfopenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA